The Benefits Of Buying A Tyre To Oil Plant

Cathy Wang • April 20, 2023

Converting waste tyres to oil is now a highly effective technique for solving the difficulties that waste tyres cause. This is also true in relation to the vitality crisis which we are currently facing.


The tyre-to-oil process involves pyrolysis, and also this technique demands a high temperature. Before using one of those plants to convert waste tyres into oil, here are some considerations you need to be aware of:


- First thing that is essential is to extract the steel wire out of the tyres


- Another consideration is so that the waste tyre sizes can reach a certain standard. For continuous and semi-continuous waste tyre-to-oil equipment, the size has to be around 50mm. To the batch pyrolysis plants, the size and style needs to be below 1,200mm.


From this point, the recycling technique of turning tyres into oil may start:


- The waste tyres are placed inside a reactor


- The reactor is heated by using fuels such as charcoal, coal, wood, or fuel gas. After the temperature has reached about 120 degrees, the burning process produces oil gas


- Several of the oil gas will flow into a condensing system where it makes liquid oil. The gas that cannot liquify under this pressure will pass back in a combustion system after it provides passed through the purification system. This gas will then be used being a fuel to provide heat towards the reactor, which helps to conserve energy


- After the oil-production process completes, the reactor is going to be cooled down. In this step of your process carbon black is produced


- There exists a additionally a dedusting system which is used to process any smoke and to make sure that the machinery fails to produce air pollution


When the tyre-to-oil process completes, you happen to be left with around 45% fuel oil, 8% combustible gas, 12% steel wire, and 35% carbon black. Every one of these end-goods are useful and can be used for various applications:


- Fuel oil is commonly used as the industrial fuel materials or it is actually refined further into diesel


- The carbon black can also be used as a kind of fuel or it could be processed further


- The steel wire is either recycled or resold to steel plants for producing new items


- The combustible gas is also recycled and employed to provide fuel for the reactor, which will help to save lots of energy through the entire working process


Top Reasons To Purchase A Tyre-To-Oil Plant


In case you are currently operating a company that has access to huge amounts of waste rubber tyres, you could turn this waste into a second business to build a lot more profits. Converting tyres into oil enables you to alleviate the situation of waste tyres taking up so much space in landfills and breaking down this rubber contributes to various by-products that could be sold or used. Following this process, you will certainly be left with bio-fuel that can be used in diesel engines, offering an important supply of recycled energy.

By Cathy Wang September 27, 2025
The petrochemical industry faces intensifying scrutiny over its environmental footprint and operational efficiency. Among the technologies reshaping waste and residue management, the Thermal Desorption Unit (TDU) has emerged as a cornerstone solution. By applying controlled heat to contaminated substrates, TDU systems volatilize hydrocarbons and separate them from inert solids, enabling both material recovery and safe disposal. Process Fundamentals At its core, a thermal desorption unit leverages indirect heating to elevate the temperature of oil-contaminated solids without combustion. As hydrocarbons reach volatilization thresholds, they are desorbed and conveyed into a vapor stream. This vapor is subsequently condensed into liquid hydrocarbons, while residual solids—largely inert—are left behind for further treatment or reuse. The method is particularly valuable in handling complex petrochemical residues such as tank bottoms, refinery sludge, and catalyst fines. Unlike chemical neutralization or direct incineration, thermal desorption preserves resource value while minimizing secondary pollutants.
September 24, 2025
The flash point of tire-derived pyrolysis oil is a critical quality parameter influencing storage, transportation, and end-use safety. A low flash point increases volatility, leading to flammability risks and limiting the oil’s acceptance in industrial markets. Optimizing this property requires a comprehensive approach that spans feedstock preparation, thermal process design, and downstream refining. Influence of Feedstock and Preprocessing The nature of scrap tire feedstock significantly determines the oil’s volatile fraction composition. Tires with higher proportions of synthetic rubber and additives often generate light hydrocarbons that depress flash point. Preprocessing measures such as shredding and controlled drying help ensure consistent thermal decomposition, while selective removal of non-rubber components minimizes impurities that destabilize oil quality. Uniform feedstock preparation forms the foundation for stable tyre pyrolysis plant outputs.
By Cathy Wang September 16, 2025
This is a subtitle for your new post